If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+21t+6
We move all terms to the left:
0-(-16t^2+21t+6)=0
We add all the numbers together, and all the variables
-(-16t^2+21t+6)=0
We get rid of parentheses
16t^2-21t-6=0
a = 16; b = -21; c = -6;
Δ = b2-4ac
Δ = -212-4·16·(-6)
Δ = 825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{825}=\sqrt{25*33}=\sqrt{25}*\sqrt{33}=5\sqrt{33}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-5\sqrt{33}}{2*16}=\frac{21-5\sqrt{33}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+5\sqrt{33}}{2*16}=\frac{21+5\sqrt{33}}{32} $
| 4-x=x+10 | | 2(3x-4)–(4x+8)=0 | | 12-x=2x+21 | | (X+2)(x+3)=182=14×13 | | (X+2)(x+3)=182 | | 2x+2+x+4+3x-1=35 | | 5(b+-2)=-15 | | 20+(2h)=180 | | -8(8+x)-6(7x-3)=54 | | (2(2h))+140=180 | | 2x+2(x-7)=(x+9)+(x-7)+(x+2) | | 2(2h)+140=180 | | (w-6)(w-6)=2w^2-10w+12 | | (2h)^2+140=180 | | 4−4n=10−5n | | (w-5)(w-5)=2w^2-18w+40 | | 4x^2-0.6x=0 | | 6x+52=80 | | v^2-20v+78=3 | | -8=x÷2+-3 | | 3x-19=x+31 | | 2(x-3)^2-9=279 | | .7e−4=31 | | 150=-5p+10 | | (7x+20)+(3x+92)=180 | | 48=-x/2 | | 7x+20=3x+112 | | -43=3x+5 | | -(2x+8)=-14 | | 6x+12=3×+63 | | 6x+12+3×+63=180 | | -4(5+x)=44 |